{ "id": "1603.08663", "version": "v1", "published": "2016-03-29T07:21:43.000Z", "updated": "2016-03-29T07:21:43.000Z", "title": "On formulae decoupling the total variation of BV functions", "authors": [ "Augusto C. Ponce", "Daniel Spector" ], "comment": "17 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "In this paper we prove several formulae that enable one to capture the singular portion of the measure derivative of a function of bounded variation as a limit of non-local functionals. One special case shows that rescalings of the fractional Laplacian of a function $u\\in SBV$ converge strictly to the singular portion of $Du$.", "revisions": [ { "version": "v1", "updated": "2016-03-29T07:21:43.000Z" } ], "analyses": { "keywords": [ "bv functions", "total variation", "formulae decoupling", "singular portion", "non-local functionals" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }