{ "id": "1603.08476", "version": "v1", "published": "2016-03-28T18:41:23.000Z", "updated": "2016-03-28T18:41:23.000Z", "title": "Transfer matrix approach to 1d random band matrices: density of states", "authors": [ "Mariya Shcherbina", "Tatyana Shcherbina" ], "comment": "27 p", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the special case of $n\\times n$ 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix $J=(-W^2\\triangle+1)^{-1}$. Assuming that $n\\ge CW\\log W\\gg 1$, we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order $W^{-1}$.", "revisions": [ { "version": "v1", "updated": "2016-03-28T18:41:23.000Z" } ], "analyses": { "keywords": [ "1d random band matrices", "transfer matrix approach", "1d gaussian hermitian random band", "gaussian hermitian random band matrices" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }