{ "id": "1603.07685", "version": "v1", "published": "2016-03-23T13:53:42.000Z", "updated": "2016-03-23T13:53:42.000Z", "title": "Hardy spaces for Bessel-Schrödinger operators", "authors": [ "Edyta Kania", "Marcin Preisner" ], "categories": [ "math.CA", "math.AP", "math.FA" ], "abstract": "Consider the Bessel operator with a potential on L^2((0,infty), x^a dx), namely Lf(x) = -f''(x) - a/x f'(x) + V(x)f(x). We assume that a>0 and V\\in L^1_{loc}((0,infty), x^a dx) is a non-negative function. By definition, a function f\\in L^1((0,infty), x^a dx) belongs to the Hardy space H^1(L) if sup_{t>0} |e^{-tL} f| \\in L^1((0,infty), x^a dx). Under certain assumptions on V we characterize the space H^1(L) in terms of atomic decompositions of local type. In the second part we prove that this characterization can be applied to L for a \\in (0,1) with no additional assumptions on the potential V.", "revisions": [ { "version": "v1", "updated": "2016-03-23T13:53:42.000Z" } ], "analyses": { "subjects": [ "42B30", "42B25", "35J10", "47D03", "43A85" ], "keywords": [ "hardy space", "bessel-schrödinger operators", "bessel operator", "second part", "local type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160307685K" } } }