{ "id": "1603.07681", "version": "v1", "published": "2016-03-24T17:47:29.000Z", "updated": "2016-03-24T17:47:29.000Z", "title": "Bands in $L_p$-spaces", "authors": [ "Hendrik Vogt", "Jürgen Voigt" ], "categories": [ "math.FA" ], "abstract": "For a general measure space $(\\Omega,\\mu)$, it is shown that for every band $M$ in $L_p(\\mu)$ there exists a decomposition $\\mu=\\mu'+\\mu\"$ such that $M=L_p(\\mu')=\\{f\\in L_p(\\mu);f=0\\ \\mu\"\\text{-a.e.}\\}$. The theory is illustrated by an example, with an application to absorption semigroups.", "revisions": [ { "version": "v1", "updated": "2016-03-24T17:47:29.000Z" } ], "analyses": { "subjects": [ "46B42", "28A05", "47D06" ], "keywords": [ "general measure space", "absorption semigroups", "decomposition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160307681V" } } }