{ "id": "1603.07520", "version": "v1", "published": "2016-03-24T10:47:16.000Z", "updated": "2016-03-24T10:47:16.000Z", "title": "Cubic Perturbations of Symmetric elliptic Hamiltonians of degree four in a Complex domain", "authors": [ "Bassem Ben Hamed", "Ameni Gargouri", "Lubomir Gavrilov" ], "comment": "17 pages, 5 figures in Bull. Sci. math. 2016. arXiv admin note: substantial text overlap with arXiv:1401.5419", "categories": [ "math.DS" ], "abstract": "We consider arbitrary one-parameter cubic deformations of the Duffing oscillator $x\"=x-x^3$. In the case when the first Melnikov function $M_1$ vanishes, but $M_2\\neq 0$ we compute the general form of $M_2$ and study its zeros in a suitable complex domain.", "revisions": [ { "version": "v1", "updated": "2016-03-24T10:47:16.000Z" } ], "analyses": { "subjects": [ "34C07", "37G15" ], "keywords": [ "symmetric elliptic hamiltonians", "cubic perturbations", "arbitrary one-parameter cubic deformations", "first melnikov function", "suitable complex domain" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }