{ "id": "1603.07406", "version": "v1", "published": "2016-03-24T01:26:35.000Z", "updated": "2016-03-24T01:26:35.000Z", "title": "Higher interpolation and extension for persistence modules", "authors": [ "Peter Bubenik", "Vin de Silva", "Vidit Nanda" ], "comment": "12 Pages, 2 Figures", "categories": [ "math.AT", "math.CT" ], "abstract": "The use of topological persistence in contemporary data analysis has provided considerable impetus for investigations into the geometric and functional-analytic structure of the space of persistence modules. In this paper, we isolate a coherence criterion which guarantees the extensibility of non-expansive maps into this space across embeddings of the domain to larger ambient metric spaces. Our coherence criterion is category-theoretic, allowing Kan extensions to provide the desired extensions. As a consequence of such \"higher-interpolation\", it becomes possible to compare Vietoris-Rips and Cech complexes built within the space of persistence modules.", "revisions": [ { "version": "v1", "updated": "2016-03-24T01:26:35.000Z" } ], "analyses": { "keywords": [ "persistence modules", "higher interpolation", "coherence criterion", "larger ambient metric spaces", "contemporary data analysis" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160307406B" } } }