{ "id": "1603.07214", "version": "v1", "published": "2016-03-23T15:00:23.000Z", "updated": "2016-03-23T15:00:23.000Z", "title": "The rate of convergence for the renewal theorem in $\\mathbb{R}^d$", "authors": [ "Jean-Baptiste Boyer" ], "categories": [ "math.PR", "math.DS" ], "abstract": "Let $\\rho$ be a borelian probability measure on $\\mathrm{SL}\\_d(\\mathbb{R})$. Consider the random walk $(X\\_n)$ on $\\mathbb{R}^d\\setminus\\{0\\}$ defined by $\\rho$ : for any $x\\in \\mathbb{R}^d\\setminus\\{0\\}$, we set $X\\_0 =x$ and $X\\_{n+1} = g\\_{n+1} X\\_n$ where $(g\\_n)$ is an iid sequence of $\\mathrm{SL}\\_d(\\mathbb{R})-$valued random variables of law $\\rho$. Guivarc'h and Raugi proved that under an assumption on the subgroup generated by the support of $\\rho$ (strong irreducibility and proximality), this walk is transient.In particular, this proves that if $f$ is a compactly supported continuous function on $\\mathbb{R}^d$, then the function $Gf(x) :=\\mathbb{E}\\_x \\sum\\_{k=0}^{+\\infty} f(X\\_n)$ is well defined for any $x\\in \\mathbb{R}^d \\setminus\\{0\\}$.Guivarc'h and Le Page proved the renewal theorem in this situation : they study the possible limits of $Gf$ at $0$ and in this article, we study the rate of convergence in their renewal theorem.To do so, we consider the family of operators $(P(it))\\_{t\\in \\mathbb{R}}$ defined for any continuous function $f$ on the sphere $\\mathbb{S}^{d-1}$ and any $x\\in \\mathbb{S}^{d-1}$ by\\[P(it) f(x) = \\int\\_{\\mathrm{SL}\\_d(\\mathbb{R})} e^{-it \\ln \\frac{\\|gx\\|}{\\|x\\|}} f\\left(\\frac{gx}{\\|gx\\|}\\right) \\mathrm{d}\\rho(g)\\]We prove that, adding an exponential moment condition to the strong irreducibility and proximality condition, we have that for some $L\\in \\mathbb{R}$ and any $t\\_0 \\in \\mathbb{R}\\_+^\\ast$,\\[\\sup\\_{\\substack{t\\in \\mathbb{R}\\\\ |t| \\geqslant t\\_0}} \\frac{1}{|t|^L} \\left\\| (I\\_d-P(it))^{-1} \\right\\| \\text{is finite}\\]where the norm is taken in some space of h\\\"older-continuous functions on the sphere.", "revisions": [ { "version": "v1", "updated": "2016-03-23T15:00:23.000Z" } ], "analyses": { "keywords": [ "renewal theorem", "convergence", "strong irreducibility", "exponential moment condition", "borelian probability measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160307214B" } } }