{ "id": "1603.06827", "version": "v1", "published": "2016-03-22T15:22:01.000Z", "updated": "2016-03-22T15:22:01.000Z", "title": "A new expander and improved bounds for $A(A+A)$", "authors": [ "Oliver Roche-Newton" ], "comment": "14 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "The main result in this paper concerns a new five-variable expander. It is proven that for any finite set of real numbers $A$, $$|\\{(a_1+a_2+a_3+a_4)^2+\\log a_5 :a_1,a_2,a_3,a_4,a_5 \\in A \\}| \\gg \\frac{|A|^2}{\\log |A|}.$$ This bound is optimal, up to logarithmic factors. The paper also gives new lower bounds for $|A(A-A)|$ and $|A(A+A)|$, improving on results from arXiv:1312.6438. The new bounds are $$|A(A-A)| \\gtrapprox |A|^{3/2+\\frac{1}{34}}$$ and $$|A(A+A)| \\gtrapprox |A|^{3/2+\\frac{5}{242}}.$$", "revisions": [ { "version": "v1", "updated": "2016-03-22T15:22:01.000Z" } ], "analyses": { "keywords": [ "main result", "paper concerns", "logarithmic factors", "lower bounds", "real numbers" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160306827R" } } }