{ "id": "1603.06761", "version": "v1", "published": "2016-03-22T12:35:21.000Z", "updated": "2016-03-22T12:35:21.000Z", "title": "On bulk singularities in the random normal matrix model", "authors": [ "Yacin Ameur", "Seong-Mi Seo" ], "categories": [ "math-ph", "math.CV", "math.MP", "math.PR" ], "abstract": "We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to study the distribution of eigenvalues close to a bulk singularity, i.e. a point in the interior of the droplet where the density of the classical equilibrium measure vanishes. We prove results to the effect that a certain \"dominant part\" of the Taylor expansion determines the microscopic properties near a bulk singularity. A description of the distribution is given in terms of a special entire function, which depends on the nature of the singularity (a Mittag-Leffler function in the case of a rotationally symmetric singularity).", "revisions": [ { "version": "v1", "updated": "2016-03-22T12:35:21.000Z" } ], "analyses": { "keywords": [ "random normal matrix model", "bulk singularity", "classical equilibrium measure vanishes", "special entire function", "taylor expansion determines" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }