{ "id": "1603.06539", "version": "v1", "published": "2016-03-21T19:08:05.000Z", "updated": "2016-03-21T19:08:05.000Z", "title": "The index of shrinkers of the mean curvature flow", "authors": [ "Zihan Hans Liu" ], "categories": [ "math.DG" ], "abstract": "We introduce a notion of index for shrinkers of the mean curvature flow. We then prove a gap theorem for the index of rotationally symmetric immersed shrinkers in R^3, namely, that such shrinkers have index at least 3, unless they are one of the stable ones: the sphere, the cylinder, or the plane. We also provide a generalization of the result to higher dimensions.", "revisions": [ { "version": "v1", "updated": "2016-03-21T19:08:05.000Z" } ], "analyses": { "keywords": [ "mean curvature flow", "gap theorem", "rotationally symmetric immersed shrinkers", "higher dimensions", "generalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160306539L" } } }