{ "id": "1603.06425", "version": "v1", "published": "2016-03-21T13:28:08.000Z", "updated": "2016-03-21T13:28:08.000Z", "title": "Reduced norms and the Riemann-Roch theorem for Abelian varieties", "authors": [ "Nathan Grieve" ], "categories": [ "math.AG" ], "abstract": "We explain how the Riemann-Roch theorem for divisors on an abelian variety $A$ is related to the reduced norms of the Wedderburn components of $\\End^0(A)$ the $\\QQ$-endomorphism algebra of $A$. We then describe some consequences and examples.", "revisions": [ { "version": "v1", "updated": "2016-03-21T13:28:08.000Z" } ], "analyses": { "keywords": [ "abelian variety", "riemann-roch theorem", "reduced norms", "endomorphism algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160306425G" } } }