{ "id": "1603.06391", "version": "v1", "published": "2016-03-21T11:32:28.000Z", "updated": "2016-03-21T11:32:28.000Z", "title": "$C^{1,α}$ regularity for the normalized $p$-Poisson problem", "authors": [ "Amal Attouchi", "Mikko Parviainen", "Eero Ruosteenoja" ], "comment": "30 pages", "categories": [ "math.AP" ], "abstract": "We consider the normalized $p$-Poisson problem $$-\\Delta^N_p u=f \\qquad \\text{in}\\quad \\Omega.$$ The normalized $p$-Laplacian $\\Delta_p^{N}u:=|D u|^{2-p}\\Delta_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,\\alpha}_{loc}$ regularity with nearly optimal $\\alpha$ for viscosity solutions of this problem. In the case $f\\in L^{\\infty}\\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\\in L^q\\cap C$, $q>\\max(n,\\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.", "revisions": [ { "version": "v1", "updated": "2016-03-21T11:32:28.000Z" } ], "analyses": { "subjects": [ "35J60", "35B65", "35J92" ], "keywords": [ "poisson problem", "regularity", "nonlinear potential theory", "non-divergence form", "weak theory" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160306391A" } } }