{ "id": "1603.06104", "version": "v1", "published": "2016-03-19T15:26:27.000Z", "updated": "2016-03-19T15:26:27.000Z", "title": "Continuity of attractors for a family of $C^1$ perturbations of the square", "authors": [ "Pricila S. Barbosa", "Antônio L. Pereira", "Marcone C. Pereira" ], "categories": [ "math.DS" ], "abstract": "We consider here the family of semilinear parabolic problems \\begin{equation*} \\begin{array}{rcl} \\left\\{ \\begin{array}{rcl} u_t(x,t)&=&\\Delta u(x,t) -au(x,t) + f(u(x,t)) ,\\,\\,\\ x \\in \\Omega_\\epsilon \\,\\,\\,\\mbox{and}\\,\\,\\,\\,\\,\\,t>0\\,, \\\\ \\displaystyle\\frac{\\partial u}{\\partial N}(x,t)&=&g(u(x,t)), \\,\\, x \\in \\partial\\Omega_\\epsilon \\,\\,\\,\\mbox{and}\\,\\,\\,\\,\\,\\,t>0\\,, \\end{array} \\right. \\end{array} \\end{equation*} where $ {\\Omega} $ is the unit square, $\\Omega_{\\epsilon}=h_{\\epsilon}(\\Omega)$ and $h_{\\epsilon}$ is a family of diffeomorphisms converging to the identity in the $C^1$-norm. We show that the problem is well posed for $\\epsilon>0$ sufficiently small in a suitable phase space, the associated semigroup has a global attractor $\\mathcal{A}_{\\epsilon}$ and the family $\\{\\mathcal{A}_{\\epsilon}\\}$ is continuous at $\\epsilon = 0$.", "revisions": [ { "version": "v1", "updated": "2016-03-19T15:26:27.000Z" } ], "analyses": { "subjects": [ "35B41", "35K20", "58D25" ], "keywords": [ "continuity", "perturbations", "semilinear parabolic problems", "unit square", "suitable phase space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }