{ "id": "1603.05946", "version": "v1", "published": "2016-03-18T18:02:16.000Z", "updated": "2016-03-18T18:02:16.000Z", "title": "Existence of multi-bump solutions to biharmonic operator with critical exponential growth in $\\mathbb{R}^4$", "authors": [ "Alânnio B. Nóbrega", "Denilson S. Pereira" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1602.03112", "categories": [ "math.AP" ], "abstract": "Using variational methods, we establish existence of multi-bump solutions for the following class of problems $$ \\left\\{ \\begin{array}{l} \\Delta^2 u +(\\lambda V(x)+1)u = f(u), \\quad \\mbox{in} \\quad \\mathbb{R}^{4}, u \\in H^{2}(\\mathbb{R}^{4}), \\end{array} \\right. $$ where $\\Delta^2$ is the biharmonic operator, $f$ is a continuous function with critical exponential growth and $V : \\mathbb{R}^4 \\rightarrow \\mathbb{R}$ is a continuous function verifying some conditions.", "revisions": [ { "version": "v1", "updated": "2016-03-18T18:02:16.000Z" } ], "analyses": { "keywords": [ "critical exponential growth", "multi-bump solutions", "biharmonic operator", "continuous function", "variational methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160305946N" } } }