{ "id": "1603.05573", "version": "v1", "published": "2016-03-17T17:06:45.000Z", "updated": "2016-03-17T17:06:45.000Z", "title": "Shellable weakly compact subsets of $C[0,1]$", "authors": [ "J. Lopez-Abad", "P. Tradacete" ], "comment": "13 pages", "categories": [ "math.FA" ], "abstract": "We show that for every weakly compact subset $K$ of $C[0,1]$ with finite Cantor-Bendixson rank, there is a reflexive Banach lattice $E$ and an operator $T:E\\rightarrow C[0,1]$ such that $K\\subseteq T(B_E)$. On the other hand, we exhibit an example of a weakly compact set of $C[0,1]$ homeomorphic to $\\omega^\\omega+1$ for which such $T$ and $E$ cannot exist. This answers a question of M. Talagrand in the 80's.", "revisions": [ { "version": "v1", "updated": "2016-03-17T17:06:45.000Z" } ], "analyses": { "subjects": [ "46B50", "46B42", "47B07" ], "keywords": [ "shellable weakly compact subsets", "finite cantor-bendixson rank", "reflexive banach lattice", "weakly compact set" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160305573L" } } }