{ "id": "1603.05018", "version": "v1", "published": "2016-03-16T10:26:02.000Z", "updated": "2016-03-16T10:26:02.000Z", "title": "Chromatic index, treewidth and maximum degree", "authors": [ "Henning Bruhn", "Laura Gellert", "Richard Lang" ], "comment": "13 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We conjecture that any graph $G$ with treewidth $k$ and maximum degree $\\Delta(G)\\geq k + \\sqrt{k}$ satisfies $\\chi'(G)=\\Delta(G)$. In support of the conjecture we prove its fractional version.", "revisions": [ { "version": "v1", "updated": "2016-03-16T10:26:02.000Z" } ], "analyses": { "subjects": [ "05C15", "05C72", "05C75", "G.2.2" ], "keywords": [ "maximum degree", "chromatic index", "conjecture" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160305018B" } } }