{ "id": "1603.04013", "version": "v1", "published": "2016-03-13T09:49:34.000Z", "updated": "2016-03-13T09:49:34.000Z", "title": "Finite orbits for nilpotent actions on the torus", "authors": [ "Sebastião Firmo", "Javier Ribón" ], "comment": "14 pages", "categories": [ "math.DS" ], "abstract": "A homeomorphism of the $2$-torus with Lefschetz number different from zero has a fixed point. We give a version of this result for nilpotent groups of diffeomorphisms. We prove that a nilpotent group of $2$-torus diffeomorphims has finite orbits when the group has some element with Lefschetz number different from zero.", "revisions": [ { "version": "v1", "updated": "2016-03-13T09:49:34.000Z" } ], "analyses": { "subjects": [ "37E30", "37E45", "37A15", "37A05", "54H20", "55M20", "37C25" ], "keywords": [ "finite orbits", "nilpotent actions", "lefschetz number", "nilpotent group", "torus diffeomorphims" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160304013F" } } }