{ "id": "1603.03547", "version": "v1", "published": "2016-03-11T07:28:39.000Z", "updated": "2016-03-11T07:28:39.000Z", "title": "Two Definite Integrals Involving Products of Four Legendre Functions", "authors": [ "Yajun Zhou" ], "comment": "12 pages. Proof of two integral formulae stated in arXiv:1301.1735v4 and arXiv:1506.00318v2", "categories": [ "math.CA", "math.NT" ], "abstract": "The definite integrals $ \\int_{-1}^1x[P_\\nu(x)]^4\\,\\mathrm{d} x$ and $ \\int_{0}^1x[P_\\nu(x)]^2\\{[P_\\nu(x)]^2-[P_\\nu(-x)]^2\\}\\,\\mathrm{d} x$ are evaluated in closed form, where $ P_\\nu$ stands for the Legendre function of degree $ \\nu\\in\\mathbb C$. Special cases of these integral formulae have appeared in arithmetic studies of automorphic Green's functions and Epstein zeta functions.", "revisions": [ { "version": "v1", "updated": "2016-03-11T07:28:39.000Z" } ], "analyses": { "subjects": [ "33C05", "33C15", "11F03" ], "keywords": [ "legendre function", "definite integrals", "epstein zeta functions", "automorphic greens functions", "special cases" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160303547Z" } } }