{ "id": "1603.03307", "version": "v1", "published": "2016-03-10T15:50:40.000Z", "updated": "2016-03-10T15:50:40.000Z", "title": "Level Crossing in Random Matrices: I. Random perturbation of a fixed matrix", "authors": [ "B. Shapiro", "K. Zarembo" ], "comment": "30 pages, 13 figures", "categories": [ "math-ph", "hep-th", "math.MP" ], "abstract": "We consider level crossing in a matrix family $H=H_0+\\lambda V$ where $H_0$ is a fixed $N\\times N$ matrix and $V$ belongs to one of the standard Gaussian random matrix ensembles. We study the probability distribution of level crossing points in the complex plane of $\\lambda$, for which we obtain a number of exact, asymptotic and approximate formulas.", "revisions": [ { "version": "v1", "updated": "2016-03-10T15:50:40.000Z" } ], "analyses": { "keywords": [ "random perturbation", "fixed matrix", "standard gaussian random matrix ensembles", "probability distribution", "approximate formulas" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1427056 } } }