{ "id": "1603.02901", "version": "v1", "published": "2016-03-09T14:39:51.000Z", "updated": "2016-03-09T14:39:51.000Z", "title": "Linear Extensions and Comparable pairs in Partial Orders", "authors": [ "Colin McDiarmid", "David Penman", "Vasileios Iliopoulos" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "We study the number of linear extensions of a partial order with a given proportion of comparable pairs of elements, and estimate the maximum and minimum possible numbers. We also show that a random interval partial order on $n$ elements has close to a third of the pairs comparable with high probability, and the number of linear extensions is $n! \\, 2^{-\\Theta(n)}$ with high probability.", "revisions": [ { "version": "v1", "updated": "2016-03-09T14:39:51.000Z" } ], "analyses": { "subjects": [ "06A07" ], "keywords": [ "linear extensions", "comparable pairs", "random interval partial order", "high probability" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160302901M" } } }