{ "id": "1603.02711", "version": "v1", "published": "2016-03-08T21:29:24.000Z", "updated": "2016-03-08T21:29:24.000Z", "title": "Spectral radius and fractional matchings in graphs", "authors": [ "Suil O" ], "journal": "European Journal of Combinatorics, Volume 55, 2016, Pages 144-148", "doi": "10.1016/j.ejc.2016.02.004", "categories": [ "math.CO" ], "abstract": "A {\\it fractional matching} of a graph $G$ is a function $f$ giving each edge a number in $[0,1]$ so that $\\sum_{e \\in \\Gamma(v)} f(e) \\le 1$ for each $v\\in V(G)$, where $\\Gamma(v)$ is the set of edges incident to $v$. The {\\it fractional matching number} of $G$, written $\\alpha'_*(G)$, is the maximum of $\\sum_{e \\in E(G)} f(e)$ over all fractional matchings $f$. Let $G$ be an $n$-vertex connected graph with minimum degree $d$, let $\\lambda_1(G)$ be the largest eigenvalue of $G$, and let $k$ be a positive integer less than $n$. In this paper, we prove that if $\\lambda_1(G) < d\\sqrt{1+\\frac{2k}{n-k}}$, then $\\alpha'_*(G) > \\frac{n-k}{2}$. As a result, we prove $\\alpha'_*(G) \\ge \\frac{nd^2}{\\lambda_1(G)^2 + d^2}$, we characterize when equality holds in the bound.", "revisions": [ { "version": "v1", "updated": "2016-03-08T21:29:24.000Z" } ], "analyses": { "subjects": [ "05C50", "05C70" ], "keywords": [ "spectral radius", "equality holds", "edges incident", "fractional matching number", "vertex connected graph" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160302711O" } } }