{ "id": "1603.02506", "version": "v1", "published": "2016-03-08T12:57:47.000Z", "updated": "2016-03-08T12:57:47.000Z", "title": "Joint law of the hitting time, overshoot and undershoot for a Lévy process", "authors": [ "Laure Coutin", "Waly Ngom" ], "categories": [ "math.PR" ], "abstract": "Let be $(X_t, t\\geq 0)$ be a L\\'evy process which is the sum of a Brownian motion with drift and a compound Poisson process. We consider the first passage time $\\tau_x$ at a fixed level $x>0$ by $(X_t, t\\geq 0)$ and $K_x:= X_{\\tau_x}-x$ the overshoot and $L_x:= x-X_{\\tau_x^-}$ the undershoot. We first study the regularity of the density of the first passage time. Secondly, we calculate the joint law of $(\\tau_x, K_x, L_x).$", "revisions": [ { "version": "v1", "updated": "2016-03-08T12:57:47.000Z" } ], "analyses": { "keywords": [ "joint law", "lévy process", "hitting time", "first passage time", "undershoot" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160302506C" } } }