{ "id": "1603.01885", "version": "v1", "published": "2016-03-06T22:22:22.000Z", "updated": "2016-03-06T22:22:22.000Z", "title": "Increasing coupling of probabilistic cellular automata", "authors": [ "Pierre-Yves Louis" ], "journal": "Statistics & Probability Letters, Volume 74, Issue 1, 1 August 2005, Pages 1--13", "doi": "10.1016/j.spl.2005.04.021", "categories": [ "math.PR", "cond-mat.stat-mech" ], "abstract": "We give a necessary and sufficient condition for the existence of an increasing coupling of $N$ ($N \\geq 2$) synchronous dynamics on $S^{\\mathbb Z^d}$(PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where $S$ is totally ordered, applications to attractive PCA's are given. When $S$ is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces.", "revisions": [ { "version": "v1", "updated": "2016-03-06T22:22:22.000Z" } ], "analyses": { "subjects": [ "60K35", "60E15", "60J10", "82C20", "37B15", "68W10" ], "keywords": [ "probabilistic cellular automata", "increasing coupling", "synchronous dynamics", "main construction theorem", "main result" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160301885L" } } }