{ "id": "1603.01877", "version": "v1", "published": "2016-03-06T20:55:23.000Z", "updated": "2016-03-06T20:55:23.000Z", "title": "Algebraic dimension of complex nilmanifolds", "authors": [ "Anna Fino", "Gueo Grantcharov", "Misha Verbitsky" ], "comment": "21 pages", "categories": [ "math.DG", "math.AG", "math.CV" ], "abstract": "Let M be a complex nilmanifold, that is, a compact quotient of a nilpotent Lie group endowed with an invariant complex structure by a discrete lattice. A holomorphic differential on M is a closed, holomorphic 1-form. We show that $a(M)\\leq k$, where $a(M)$ is the algebraic dimension $a(M)$ (i.e. the transcendence degree of the field of meromorphic functions) and $k$ is the dimension of the space of holomorphic differentials. We prove a similar result about meromorphic maps to Kahler manifolds.", "revisions": [ { "version": "v1", "updated": "2016-03-06T20:55:23.000Z" } ], "analyses": { "keywords": [ "complex nilmanifold", "algebraic dimension", "holomorphic differential", "nilpotent lie group", "invariant complex structure" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160301877F" } } }