{ "id": "1603.01781", "version": "v1", "published": "2016-03-06T03:17:04.000Z", "updated": "2016-03-06T03:17:04.000Z", "title": "Variable Weak Hardy Spaces and Their Applications", "authors": [ "Xianjie Yan", "Dachun Yang", "Wen Yuan", "Ciqiang Zhuo" ], "comment": "60 pages, submitted", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $p(\\cdot):\\ \\mathbb R^n\\to(0,\\infty)$ be a variable exponent function satisfying the globally log-H\\\"older continuous condition. In this article, the authors first introduce the variable weak Hardy space on $\\mathbb R^n$, $W\\!H^{p(\\cdot)}(\\mathbb R^n)$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain various equivalent characterizations of $W\\!H^{p(\\cdot)}(\\mathbb R^n)$, respectively, by means of atoms, molecules, the Lusin area function, the Littlewood-Paley $g$-function or $g_{\\lambda}^\\ast$-function. As an application, the authors establish the boundedness of convolutional $\\delta$-type and non-convolutional $\\gamma$-order Calder\\'on-Zygmund operators from $H^{p(\\cdot)}(\\mathbb R^n)$ to $W\\!H^{p(\\cdot)}(\\mathbb R^n)$ including the critical case $p_-={n}/{(n+\\delta)}$, where $p_-:=\\mathop\\mathrm{ess\\,inf}_{x\\in \\rn}p(x).$", "revisions": [ { "version": "v1", "updated": "2016-03-06T03:17:04.000Z" } ], "analyses": { "subjects": [ "42B30", "42B25", "42B20", "42B35", "46E30" ], "keywords": [ "variable weak hardy space", "application", "radial grand maximal function", "non-tangential maximal function characterizations", "lusin area function" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160301781Y" } } }