{ "id": "1603.01349", "version": "v1", "published": "2016-03-04T05:27:07.000Z", "updated": "2016-03-04T05:27:07.000Z", "title": "Two arithmetic relations of a subspace of $P^{n}(K)$ and a subgroup of $\\operatorname{Aut}(K)$", "authors": [ "Jun-ichi Matsushita" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Let $K$ be a commutative field and let $V$ be a subspace of $P^{n}(K)$. Let $\\Gamma$ be a subgroup of $\\operatorname{Aut}(K)$ and define the action of $\\Gamma$ on $P^{n}(K)$ by letting $\\sigma((x_{i})_{0\\leqslant i\\leqslant n})$ be $(\\sigma(x_{i}))_{0\\leqslant i\\leqslant n}$ for $\\sigma\\in\\Gamma$, $(x_{i})_{0\\leqslant i\\leqslant n}\\in P^{n}(K)$. In this paper, using two arithmetic notions defined in terms of the Pl\\\"{u}cker coordinates of $V$ and the invariant field of $\\Gamma$, we answer the questions: By what number is the dimension of the join (resp. meet) of $\\sigma(V)$ ($\\sigma\\in\\Gamma$) greater (resp. less) than the dimension of $V$?", "revisions": [ { "version": "v1", "updated": "2016-03-04T05:27:07.000Z" } ], "analyses": { "keywords": [ "arithmetic relations", "arithmetic notions", "invariant field", "commutative field", "coordinates" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160301349M" } } }