{ "id": "1603.01306", "version": "v1", "published": "2016-03-03T22:39:11.000Z", "updated": "2016-03-03T22:39:11.000Z", "title": "Zeros of certain combinations of Eisenstein series", "authors": [ "Sarah Reitzes", "Polina Vulakh", "Matthew P. Young" ], "comment": "29 pages", "categories": [ "math.NT" ], "abstract": "We prove that if $k$ and $\\ell$ are sufficiently large, then all the zeros of the weight $k+\\ell$ cusp form $E_k(z) E_{\\ell}(z) - E_{k+\\ell}(z)$ in the standard fundamental domain lie on the boundary. We moreover find formulas for the number of zeros on the bottom arc with $|z|=1$, and those on the sides with $x = \\pm 1/2$. One important ingredient of the proof is an approximation of the Eisenstein series in terms of the Jacobi theta function.", "revisions": [ { "version": "v1", "updated": "2016-03-03T22:39:11.000Z" } ], "analyses": { "subjects": [ "11F11" ], "keywords": [ "eisenstein series", "combinations", "standard fundamental domain lie", "jacobi theta function", "cusp form" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160301306R" } } }