{ "id": "1603.00754", "version": "v1", "published": "2016-03-02T15:37:01.000Z", "updated": "2016-03-02T15:37:01.000Z", "title": "Matrix Characterization of Multidimensional Subshifts of Finite Type", "authors": [ "Puneet Sharma", "Dileep Kumar" ], "categories": [ "math.DS" ], "abstract": "Let $X\\subset A^{Z^d}$ be a $2$-dimensional subshift of finite type. We prove that any $2$-dimensional multidimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general $d$-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space $X$ to exhibit periodic points.", "revisions": [ { "version": "v1", "updated": "2016-03-02T15:37:01.000Z" } ], "analyses": { "subjects": [ "37B10", "37B20", "37B50" ], "keywords": [ "finite type", "matrix characterization", "multidimensional shift space", "sufficient conditions", "dimensional multidimensional subshift" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160300754S" } } }