{ "id": "1603.00722", "version": "v1", "published": "2016-03-02T14:33:24.000Z", "updated": "2016-03-02T14:33:24.000Z", "title": "Integrals of products of Hurwitz zeta functions", "authors": [ "M. A. Shpot", "M. P. Chaudhary", "R. B. Paris" ], "categories": [ "math.CA", "hep-th", "math.CV" ], "abstract": "We evaluate two integrals over $x\\in [0,1]$ involving products of the function $\\zeta_1(a,x)\\equiv \\zeta(a,x)-x^{-a}$ for $\\Re (a)>1$, where $\\zeta(a,x)$ is the Hurwitz zeta function. The evaluation of these integrals for the particular case of integer $a\\geq 2$ is also presented. As an application we calculate the $O(g)$ weak-coupling expansion coefficient $c_{1}(\\varepsilon)$ of the Casimir energy for a film with Dirichlet-Dirichlet boundary conditions, first stated by Symanzik [Schr\\\"odinger representation and Casimir effect in renormalizable quantum field theory, Nucl. Phys. B 190 (1981) 1-44] in the framework of $g\\phi^4_{4-\\varepsilon}$ theory.", "revisions": [ { "version": "v1", "updated": "2016-03-02T14:33:24.000Z" } ], "analyses": { "subjects": [ "11M35", "11B68", "33B15", "33E20" ], "keywords": [ "hurwitz zeta function", "dirichlet-dirichlet boundary conditions", "renormalizable quantum field theory", "casimir effect", "casimir energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160300722S", "inspire": 1425709 } } }