{ "id": "1603.00373", "version": "v1", "published": "2016-03-01T17:35:36.000Z", "updated": "2016-03-01T17:35:36.000Z", "title": "Rigidity of 2-step Carnot groups", "authors": [ "Mauricio Godoy Molina", "Boris Kruglikov", "Irina Markina", "Alexander Vasil'ev" ], "comment": "19 pages", "categories": [ "math.RT", "math.DG" ], "abstract": "In the present paper we study the rigidity of 2-step Carnot groups, or equivalently, of graded 2-step nilpotent Lie algebras. We prove the alternative that depending on bi-dimensions of the algebra, the Lie algebra structure makes it either always of infinite type or generically rigid, and we specify the bi-dimensions for each of the choices. Explicit criteria for rigidity of pseudo $H$- and $J$-type algebras are given. In particular, we establish the relation of the so-called $J^2$-condition to rigidity, and we explore these conditions in relation to pseudo $H$-type algebras.", "revisions": [ { "version": "v1", "updated": "2016-03-01T17:35:36.000Z" } ], "analyses": { "subjects": [ "17B30", "17B70", "16W55", "22E60" ], "keywords": [ "carnot groups", "type algebras", "nilpotent lie algebras", "lie algebra structure", "bi-dimensions" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1441136 } } }