{ "id": "1602.09032", "version": "v1", "published": "2016-02-29T16:31:33.000Z", "updated": "2016-02-29T16:31:33.000Z", "title": "A remark on Deligne's finiteness theorem", "authors": [ "Hélène Esnault" ], "comment": "latex, 4 pages", "categories": [ "math.AG" ], "abstract": "Over a connected geometrically unibranch scheme $X$ of finite type over a finite field, we show finiteness of the number of irreducible $\\bar \\Q_\\ell$-lisse sheaves, with bounded rank and bounded ramification in the sense of Drinfeld, up to twist by a character of the finite field. On $X$ smooth, with bounded ramification in the sense of bounding the Swan conductors on curves, this is Deligne's theorem.", "revisions": [ { "version": "v1", "updated": "2016-02-29T16:31:33.000Z" } ], "analyses": { "keywords": [ "delignes finiteness theorem", "finite field", "bounded ramification", "delignes theorem", "swan conductors" ], "note": { "typesetting": "LaTeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160209032E" } } }