{ "id": "1602.08850", "version": "v1", "published": "2016-02-29T08:08:57.000Z", "updated": "2016-02-29T08:08:57.000Z", "title": "Spectrality and tiling by cylindric domains", "authors": [ "Rachel Greenfeld", "Nir Lev" ], "categories": [ "math.CA", "math.FA" ], "abstract": "A bounded set $\\Omega \\subset \\mathbb{R}^d$ is called a spectral set if the space $L^2(\\Omega)$ admits a complete orthogonal system of exponential functions. We prove that a cylindric set $\\Omega$ is spectral if and only if its base is a spectral set. A similar characterization is obtained of the cylindric sets which can tile the space by translations.", "revisions": [ { "version": "v1", "updated": "2016-02-29T08:08:57.000Z" } ], "analyses": { "keywords": [ "cylindric domains", "spectrality", "cylindric set", "spectral set", "complete orthogonal system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }