{ "id": "1602.08827", "version": "v1", "published": "2016-02-29T05:37:11.000Z", "updated": "2016-02-29T05:37:11.000Z", "title": "An application of a theorem of Emerton to mod $p$ representations of $\\mathrm{GL}_2$", "authors": [ "Yongquan Hu" ], "comment": "20 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $p$ be a prime and $L$ be a finite extension of $\\mathbb{Q}_p$. We study the ordinary parts of $\\mathrm{GL}_2(L)$-representations arised in the mod $p$ cohomology of Shimura curves attached to indefinite division algebras which splits at a finite place above $p$. The main tool of the proof is a theorem of Emerton \\cite{Em3}.", "revisions": [ { "version": "v1", "updated": "2016-02-29T05:37:11.000Z" } ], "analyses": { "keywords": [ "representations", "application", "indefinite division algebras", "finite extension", "finite place" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160208827H" } } }