{ "id": "1602.08698", "version": "v1", "published": "2016-02-28T10:39:52.000Z", "updated": "2016-02-28T10:39:52.000Z", "title": "Equal Sums of Like Powers with Minimum Number of Terms", "authors": [ "Ajai Choudhry" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "This paper is concerned with the diophantine system, $\\sum_{i=1}^{s_1} x_i^r=\\sum_{i=1}^{s_2} y_i^r,\\, r=1,\\,2,\\,\\ldots,\\,k, $ where $s_1$ and $s_2$ are integers such that the total number of terms on both sides, that is, $s_1+s_2,$ is as small as possible. We define $\\beta(k)$ to be the minimum value of $s_1+s_2$ for which there exists a nontrivial solution of this diophantine system. We find nontrivial integer solutions of this diophantine system when $k < 6$, and thereby show that $\\beta(2) =4,\\;\\, \\beta(3) = 6,\\;\\, 7 \\leq \\beta(4) \\leq 8$ and $8 \\leq \\beta(5) \\leq 10$.", "revisions": [ { "version": "v1", "updated": "2016-02-28T10:39:52.000Z" } ], "analyses": { "subjects": [ "11D25", "11D41" ], "keywords": [ "equal sums", "minimum number", "diophantine system", "nontrivial integer solutions", "nontrivial solution" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }