{ "id": "1602.08612", "version": "v1", "published": "2016-02-27T17:03:08.000Z", "updated": "2016-02-27T17:03:08.000Z", "title": "Volume constrained minimizers of the fractional perimeter with a potential energy", "authors": [ "Annalisa Cesaroni", "Matteo Novaga" ], "categories": [ "math.AP" ], "abstract": "We consider volume-constrained minimizers of the fractional perimeter with the addition of a potential energy in the form of a volume inte- gral. Such minimizers are solutions of the prescribed fractional curvature problem. We prove existence and regularity of minimizers under suitable assumptions on the potential energy, which cover the periodic case. In the small volume regime we show that minimizers are close to balls, with a quantitative estimate.", "revisions": [ { "version": "v1", "updated": "2016-02-27T17:03:08.000Z" } ], "analyses": { "keywords": [ "potential energy", "volume constrained minimizers", "fractional perimeter", "prescribed fractional curvature problem", "small volume regime" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }