{ "id": "1602.08428", "version": "v1", "published": "2016-02-26T18:35:47.000Z", "updated": "2016-02-26T18:35:47.000Z", "title": "Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights", "authors": [ "Jean-Dominique Deuschel", "Tuan Anh Nguyen", "Martin Slowik" ], "comment": "22 pages", "categories": [ "math.PR", "math.AP" ], "abstract": "We consider a stationary and ergodic random field $\\{\\omega(e) : e \\in E_d\\}$ that is parameterized by the edge set of the Euclidean lattice $\\mathbb{Z}^d$, $d \\geq 2$. The random variable $\\omega(e)$, taking values in $[0, \\infty)$ and satisfying certain moment bounds, is thought of as the conductance of the edge $e$. Assuming that the set of edges with positive conductances give rise to a unique infinite cluster $\\mathcal{C}_{\\infty}(\\omega)$, we prove a quenched invariance principle for the continuous-time random walk among random conductances under certain moment conditions. An essential ingredient of our proof is a new anchored relative isoperimetric inequality.", "revisions": [ { "version": "v1", "updated": "2016-02-26T18:35:47.000Z" } ], "analyses": { "subjects": [ "60K37", "60F17", "82C41", "82B43" ], "keywords": [ "quenched invariance principle", "random conductance model", "degenerate ergodic weights", "random graph", "unique infinite cluster" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160208428D" } } }