{ "id": "1602.08208", "version": "v1", "published": "2016-02-26T06:08:52.000Z", "updated": "2016-02-26T06:08:52.000Z", "title": "$L^p$-mapping properties for Schrödinger operators in open sets of $\\mathbb R ^d$", "authors": [ "T. Iwabuchi", "T. Matsuyama", "K. Taniguchi" ], "comment": "32 pages", "categories": [ "math.FA", "math.SP" ], "abstract": "Let $H_V=-\\Delta +V$ be a Schr\\\"odinger operator on an arbitrary open set $\\Omega$ of $\\mathbb R^d$, where $d \\geq 3$, and $\\Delta$ is the Dirichlet Laplacian and the potential $V$ belongs to the Kato class on $\\Omega$. The purpose of this paper is to show $L^p$-boundedness of an operator $\\varphi(H_V)$ for any rapidly decreasing function $\\varphi$ on $\\mathbb R$. $\\varphi(H_V)$ is defined by the spectral theorem. As a by-product, $L^p$-$L^q$-estimates for $\\varphi(H_V)$ are also obtained.", "revisions": [ { "version": "v1", "updated": "2016-02-26T06:08:52.000Z" } ], "analyses": { "subjects": [ "47F05", "26D10" ], "keywords": [ "schrödinger operators", "mapping properties", "arbitrary open set", "dirichlet laplacian", "kato class" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160208208I" } } }