{ "id": "1602.07829", "version": "v1", "published": "2016-02-25T07:35:56.000Z", "updated": "2016-02-25T07:35:56.000Z", "title": "The number of composition factors of order $p$ in completely reducible groups of characteristic $p$", "authors": [ "Michael Giudici", "S. P. Glasby", "Cai Heng Li", "Gabriel Verret" ], "comment": "12 pages", "categories": [ "math.GR" ], "abstract": "Let $q$ be a power of a prime $p$ and let $G$ be a completely reducible subgroup of $\\mathrm{GL}(d,q)$. We prove that the number of composition factors of $G$ that have prime order $p$ is at most $(\\varepsilon_q d-1)/(p-1)$, where $\\varepsilon_q$ is a function of $q$ satisfying $1\\leqslant\\varepsilon_q\\leqslant 3/2$. For every $q$, we give examples showing this bound is sharp infinitely often.", "revisions": [ { "version": "v1", "updated": "2016-02-25T07:35:56.000Z" } ], "analyses": { "subjects": [ "20C33", "20E34" ], "keywords": [ "composition factors", "reducible groups", "characteristic", "prime order" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }