{ "id": "1602.07313", "version": "v1", "published": "2016-02-23T21:04:51.000Z", "updated": "2016-02-23T21:04:51.000Z", "title": "Yet another look at positive linear operators, $q$-monotonicity and applications", "authors": [ "K. Kopotun", "D. Leviatan", "A. Prymak", "I. A. Shevchuk" ], "categories": [ "math.CA", "math.FA", "math.NA" ], "abstract": "For each $q\\in{\\mathbb{N}}_0$, we construct positive linear polynomial approximation operators $M_n$ that simultaneously preserve $k$-monotonicity for all $0\\leq k\\leq q$ and yield the estimate \\[ |f(x)-M_n(f, x)| \\leq c \\omega_2^{\\varphi^\\lambda} \\left(f, n^{-1} \\varphi^{1-\\lambda/2}(x) \\left(\\varphi(x) + 1/n \\right)^{-\\lambda/2} \\right) , \\] for $x\\in [0,1]$ and $\\lambda\\in [0, 2)$, where $\\varphi(x) := \\sqrt{x(1-x)}$ and $\\omega_2^{\\psi}$ is the second Ditzian-Totik modulus of smoothness corresponding to the \"step-weight function\" $\\psi$. In particular, this implies that the rate of best uniform $q$-monotone polynomial approximation can be estimated in terms of $\\omega_2^{\\varphi} \\left(f, 1/n \\right)$.", "revisions": [ { "version": "v1", "updated": "2016-02-23T21:04:51.000Z" } ], "analyses": { "subjects": [ "41A10", "41A17", "41A25" ], "keywords": [ "positive linear operators", "monotonicity", "applications", "construct positive linear polynomial approximation", "positive linear polynomial approximation operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }