{ "id": "1602.07187", "version": "v1", "published": "2016-02-23T15:16:51.000Z", "updated": "2016-02-23T15:16:51.000Z", "title": "Essential dimension of group schemes over a local scheme", "authors": [ "Tossici Dajano" ], "comment": "27 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "In this paper we develop the theory of essential dimension of group schemes over an integral base. Shortly we concentrate over a local base. As a consequence of our theory we give a result of invariance of the essential dimension over a field. The case of group schemes over a discrete valuation ring is discussed. Moreover we propose a generalization of Ledet conjecture, which predicts the essential dimension of cyclic $p$-groups in positive characteristic, for finite commutative unipotent group schemes. And we show some results and some consequences of this new conjecture.", "revisions": [ { "version": "v1", "updated": "2016-02-23T15:16:51.000Z" } ], "analyses": { "subjects": [ "14L15", "14L30" ], "keywords": [ "essential dimension", "local scheme", "finite commutative unipotent group schemes", "integral base", "discrete valuation" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160207187D" } } }