{ "id": "1602.06813", "version": "v1", "published": "2016-02-22T15:21:08.000Z", "updated": "2016-02-22T15:21:08.000Z", "title": "On generalized Eisenstein series and Ramanujan's formula for periodic zeta-functions", "authors": [ "M. Cihat Dağlı", "Mümün Can" ], "categories": [ "math.NT" ], "abstract": "In this paper, transformation formulas for a large class of Eisenstein series defined by \\[ G(z,s;A_{\\alpha},B_{\\beta};r_{1},r_{2})=\\sum\\limits_{m,n=-\\infty}^{\\infty }\\ \\hspace{-0.19in}^{^{\\prime}}\\frac{f(\\alpha m)f^{\\ast}(\\beta n)} {((m+r_{1})z+n+r_{2})^{s}},\\text{ }\\operatorname{Re}(s)>2,\\text{ }\\operatorname{Im}(z)>0 \\] are investigated for $s=1-r$, $r\\in\\mathbb{N}$. Here $\\left\\{ f(n)\\right\\}$ and $\\left\\{ f^{\\ast}(n)\\right\\}$, $-\\infty0$, and $A_{\\alpha}=\\left\\{ f(\\alpha n)\\right\\} $ and $B_{\\beta}=\\left\\{ f^{\\ast}(\\beta n)\\right\\}$, $\\alpha,\\beta\\in\\mathbb{Z}$. Appearing in the transformation formulas are generalizations of Dedekind sums involving the periodic Bernoulli function. Reciprocity law is proved for periodic Apostol-Dedekind sum outside of the context of the transformation formulas. Furthermore, transformation formulas are presented for $G(z,s;A_{\\alpha},I;r_{1},r_{2})$ and $G(z,s;I,A_{\\alpha };r_{1},r_{2})$, where $I=\\left\\{ 1\\right\\}$. As an application of these formulas, analogues of Ramanujan's formula for periodic zeta-functions are derived.", "revisions": [ { "version": "v1", "updated": "2016-02-22T15:21:08.000Z" } ], "analyses": { "subjects": [ "11M36", "11M41", "11F20", "11B68" ], "keywords": [ "generalized eisenstein series", "ramanujans formula", "periodic zeta-functions", "transformation formulas", "periodic apostol-dedekind sum outside" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160206813C" } } }