{ "id": "1602.06811", "version": "v1", "published": "2016-02-22T15:16:38.000Z", "updated": "2016-02-22T15:16:38.000Z", "title": "Unique factorization of principally polarized abelian varieties", "authors": [ "Bruce W. Jordan", "Allan G. Keeton", "Bjorn Poonen" ], "comment": "5 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "Shimura proved that each principally polarized abelian variety over $\\mathbf{C}$ admits a unique factorization into irreducible principally polarized abelian varieties. We give an exposition of his result, and generalize to an arbitrary ground field $k$. If $k$ is separably closed, the irreducible factors are in bijection with the irreducible components of a theta divisor over $k$ giving rise to the polarization.", "revisions": [ { "version": "v1", "updated": "2016-02-22T15:16:38.000Z" } ], "analyses": { "keywords": [ "principally polarized abelian variety", "unique factorization", "arbitrary ground field", "irreducible principally polarized abelian varieties", "theta divisor" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160206811J" } } }