{ "id": "1602.06770", "version": "v1", "published": "2016-02-22T13:41:26.000Z", "updated": "2016-02-22T13:41:26.000Z", "title": "Temporal correlations of the running maximum of a Brownian trajectory", "authors": [ "O. Benichou", "P. L. Krapivsky", "C. Mejia-Monasterio", "G. Oshanin" ], "comment": "5 pages, 4 figures", "categories": [ "cond-mat.stat-mech", "math.PR" ], "abstract": "We study the correlations between the maxima $m$ and $M$ of a Brownian motion on the time intervals $[0,t_1]$ and $[0,t_2]$, with $t_2>t_1$. We determine exact forms of the distribution functions $P(m,M)$ and $P(G = M - m)$, and calculate the moments $\\mathbb{E}\\{\\left(M - m\\right)^k\\}$ and the cross-moments $\\mathbb{E}\\{m^l M^k\\}$ with arbitrary integers $l$ and $k$. We compute the Pearson correlation coefficient $\\rho(m,M)$ and show that $\\rho(m,M) \\sim \\sqrt{t_1/t_2}$ when $t_2 \\to \\infty$ with $t_1$ kept fixed, revealing strong memory effects in the statistics of the maxima of a Brownian motion. As an application, we discuss a possibility of extracting the ensemble-average diffusion coefficient in single-trajectory experiments using a single realization of the maximum process of a Brownian motion.", "revisions": [ { "version": "v1", "updated": "2016-02-22T13:41:26.000Z" } ], "analyses": { "keywords": [ "brownian trajectory", "temporal correlations", "running maximum", "brownian motion", "ensemble-average diffusion coefficient" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }