{ "id": "1602.06475", "version": "v1", "published": "2016-02-20T23:44:14.000Z", "updated": "2016-02-20T23:44:14.000Z", "title": "Inequalities for critical exponents in $d$-dimensional sandpiles", "authors": [ "Sandeep Bhupatiraju", "Jack Hanson", "Antal A. Járai" ], "comment": "58 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Consider the Abelian sandpile measure on $\\mathbb{Z}^d$, $d \\ge 2$, obtained as the $L \\to \\infty$ limit of the stationary distribution of the sandpile on $[-L,L]^d \\cap \\mathbb{Z}^d$. When adding a grain of sand at the origin, some region topples during stabilization. We prove bounds on the behaviour of various avalanche characteristics: the probability that a given vertex topples, the radius of the toppled region, and the number of vertices toppled. Our results yield rigorous inequalities for the relevant critical exponents. In $d = 2$ we show that for any $1 \\le k < \\infty$, the last $k$ waves of the avalanche have an infinite volume limit, satisfying a power law upper bound on the radius.", "revisions": [ { "version": "v1", "updated": "2016-02-20T23:44:14.000Z" } ], "analyses": { "subjects": [ "60K35", "82C20" ], "keywords": [ "dimensional sandpiles", "power law upper bound", "infinite volume limit", "results yield rigorous inequalities", "abelian sandpile measure" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160206475B" } } }