{ "id": "1602.06237", "version": "v1", "published": "2016-02-19T17:54:50.000Z", "updated": "2016-02-19T17:54:50.000Z", "title": "Abelian varieties isogenous to a power of an elliptic curve", "authors": [ "Bruce W. Jordan", "Allan G. Keeton", "Bjorn Poonen", "Eric M. Rains", "Nicholas Shepherd-Barron", "John T. Tate" ], "comment": "21 pages, comments welcome", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $E$ be an elliptic curve over a field $k$. Let $R:= \\text{End}\\, E$. There is a functor $\\mathscr{H}\\!\\!\\mathit{om}_R(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a power of $E$, and a functor $\\text{Hom}(-,E)$ in the opposite direction. We prove necessary and sufficient conditions on $E$ for these functors to be equivalences of categories.", "revisions": [ { "version": "v1", "updated": "2016-02-19T17:54:50.000Z" } ], "analyses": { "keywords": [ "abelian varieties isogenous", "elliptic curve", "opposite direction", "torsion-free left", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160206237J" } } }