{ "id": "1602.05745", "version": "v1", "published": "2016-02-18T10:27:51.000Z", "updated": "2016-02-18T10:27:51.000Z", "title": "On the gaps between non-zero Fourier coefficients of cusp forms of higher weight", "authors": [ "Narasimha Kumar" ], "categories": [ "math.NT" ], "abstract": "We show that if a modular cuspidal eigenform $f$ of weight $2k$ is $2$-adically close to an elliptic curve $E/\\mathbb{Q}$, which has a cyclic rational $4$-isogeny, then $n$-th Fourier coefficient of $f$ is non-zero in the short interval $(X, X + cX^{\\frac{1}{4}})$ for all $X \\gg 0$ and for some $c > 0$. We use this fact to produce non-CM cuspidal eigenforms $f$ of level $N>1$ and weight $k > 2$ such that $i_f(n) \\ll n^{\\frac{1}{4}}$ for all $n \\gg 0$.", "revisions": [ { "version": "v1", "updated": "2016-02-18T10:27:51.000Z" } ], "analyses": { "subjects": [ "11F30", "11F11", "11F33", "11G05" ], "keywords": [ "non-zero fourier coefficients", "higher weight", "cusp forms", "produce non-cm cuspidal eigenforms", "modular cuspidal eigenform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160205745K" } } }