{ "id": "1602.05738", "version": "v1", "published": "2016-02-18T10:07:55.000Z", "updated": "2016-02-18T10:07:55.000Z", "title": "Periodicity and decidability of tilings of $\\mathbb{Z}^{2}$", "authors": [ "Siddhartha Bhattacharya" ], "categories": [ "math.CO", "math.DS" ], "abstract": "We prove that any finite set $F\\subset {\\mathbb{Z}^2}$ that tiles ${\\mathbb{Z}^2}$ by translations also admits a periodic tiling. As a consequence, the problem whether a given finite set $F$ tiles ${\\mathbb{Z}^2}$ is decidable.", "revisions": [ { "version": "v1", "updated": "2016-02-18T10:07:55.000Z" } ], "analyses": { "subjects": [ "52C20", "37A15" ], "keywords": [ "periodicity", "finite set", "decidability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160205738B" } } }