{ "id": "1602.05446", "version": "v1", "published": "2016-02-17T15:10:18.000Z", "updated": "2016-02-17T15:10:18.000Z", "title": "Classification of quasi-symmetric 2-(64,24,46) designs of Blokhuis-Haemers type", "authors": [ "Dean Crnkovic", "Bernardo Rodrigues", "Sanja Rukavina", "Vladimir D. Tonchev" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "This paper completes the classification of quasi-symmetric 2-$(64,24,46)$ designs of Blokhuis-Haemers type supported by the dual code $C^{\\perp}$ of the binary linear code $C$ spanned by the lines of $AG(3,2^2)$ initiated in \\cite{bgr-vdt}. It is shown that $C^{\\perp}$ contains exactly 30,264 nonisomorphic quasi-symmetric 2-$(64,24,46)$ designs obtainable from maximal arcs in $AG(2,2^2)$ via the Blokhuis-Haemers construction. The related strongly regular graphs are also discussed.", "revisions": [ { "version": "v1", "updated": "2016-02-17T15:10:18.000Z" } ], "analyses": { "subjects": [ "B05", "94B05" ], "keywords": [ "blokhuis-haemers type", "classification", "binary linear code", "paper completes", "related strongly regular graphs" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }