{ "id": "1602.05078", "version": "v1", "published": "2016-02-16T16:20:17.000Z", "updated": "2016-02-16T16:20:17.000Z", "title": "Nonlinear Schrödinger equations with sum of periodic and vanishig potentials and sign-changning nonlinearities", "authors": [ "Bartosz Bieganowski", "Jarosław Mederski" ], "categories": [ "math.AP" ], "abstract": "We look for ground state solutions to the following nonlinear Schr\\\"odinger equation $$-\\Delta u + V(x)u = f(x,u)-\\Gamma(x)|u|^{q-2}u\\hbox{ on }\\mathbb{R}^N,$$ where $V=V_{per}+V_{loc}\\in L^{\\infty}(\\mathbb{R}^N)$ is the sum of a periodic potential $V_{per}$ and a localized potential $V_{loc}$, $\\Gamma\\in L^{\\infty}(\\mathbb{R}^N)$ is periodic and $\\Gamma(x)\\geq 0$ for a.e. $x\\in\\mathbb{R}^N$ and $2\\leq q<2^*$. We assume that $\\inf\\sigma(-\\Delta+V)>0$, where $\\sigma(-\\Delta+V)$ stands for the spectrum of $-\\Delta +V$ and $f$ has the subcritical growth but higher than $\\Gamma(x)|u|^{q-2}u$, however the nonlinearity $f(x,u)-\\Gamma(x)|u|^{q-2}u$ may change sing. Although a Nehari-type monotonicity condition for the nonlinearity is not satisfied we investigate the existence of ground state solutions being minimizers on the Nehari manifold.", "revisions": [ { "version": "v1", "updated": "2016-02-16T16:20:17.000Z" } ], "analyses": { "subjects": [ "35Q60", "35J20", "35Q55", "58E05", "35J47" ], "keywords": [ "nonlinear schrödinger equations", "nonlinearity", "vanishig potentials", "sign-changning nonlinearities", "ground state solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160205078B" } } }