{ "id": "1602.05066", "version": "v1", "published": "2016-02-15T15:12:32.000Z", "updated": "2016-02-15T15:12:32.000Z", "title": "On Characterization of Inverse Data in the Boundary Control Method", "authors": [ "Mikhail Belishev", "Aleksei Vakulenko" ], "comment": "33 pages, 1 figure", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We deal with a dynamical system \\begin{align*} & u_{tt}-\\Delta u+qu=0 && {\\rm in}\\,\\,\\,\\Omega \\times (0,T)\\\\ & u\\big|_{t=0}=u_t\\big|_{t=0}=0 && {\\rm in}\\,\\,\\,\\overline \\Omega\\\\ & \\partial_\\nu u = f && {\\rm in}\\,\\,\\,\\partial\\Omega \\times [0,T]\\,, \\end{align*} where $\\Omega \\subset {\\mathbb R}^n$ is a bounded domain, $q \\in L_\\infty(\\Omega)$ a real-valued function, $\\nu$ the outward normal to $\\partial \\Omega$, $u=u^f(x,t)$ a solution. The input/output correspondence is realized by a response operator $R^T: f \\mapsto u^f\\big|_{\\partial\\Omega \\times [0,T]}$ and its relevant extension by hyperbolicity $R^{2T}$. Ope\\-rator $R^{2T}$ is determined by $q\\big|_{\\Omega^T}$, where $\\Omega^T:=\\{x \\in \\Omega\\,|\\,\\,{\\rm dist\\,}(x,\\partial \\Omega)